Baryogenesis in a U(1) Gauge Extension of the MSSM

- Beyond the MSSM
- A TeV Scale U(1)'
- A (string-motivated) model
- Electroweak baryogenesis

Work with Junhai Kang, Tianjun Li, Tau Liu

References

- J. Kang, P. Langacker, T. j. Li and T. Liu, Electroweak baryogenesis in a supersymmetric U(1)' model, Phys. Rev. Lett. 94, 061801 (2005) [arXiv:hep-ph/0402086], and TBP.
- J. Erler, P. Langacker and T. j. Li, The Z Z' mass hierarchy in a supersymmetric model with a secluded U(1)'-breaking sector, Phys. Rev. D 66, 015002 (2002) [arXiv:hep-ph/0205001].
- T. Han, P. Langacker and B. McElrath, The Higgs sector in a U(1)' extension of the MSSM, Phys. Rev. D 70, 115006 (2004) [arXiv:hep-ph/0405244].

Beyond the MSSM

Even if supersymmetry holds, MSSM may not be the full story

- Most of the problems of standard model remain, new ones introduced (FCNC, EDM)
- μ problem introduced: $W_{\mu} = \mu \hat{H}_{u} \cdot \hat{H}_{d}, \quad \mu = O(\text{electroweak})$

Ingredients of 4d GUTs hard to embed in string, especially large Higgs representations, Yukawa relations

Remnants of GUT/Planck scale physics may survive to TeV scale

Specific string constructions often have extended gauge groups, exotics, extended Higgs/neutralino sectors (Defect or hint?)

Important to explore alternatives/extensions to MSSM

KICP, November 2007

Remnants Physics from the Top-Down

- Z' or other gauge
- Extended Higgs/neutralino (doublet, singlet)
- Quasi-Chiral Exotics
- Non-standard ν mass (enhanced symmetries)
- **Quasi-hidden** (Strong coupling? SUSY breaking? Composite family?)
- Charge 1/2 (Confinement?, Stable relic?)
- Time varying couplings
- LED (TeV black holes, stringy resonances)
- CPTV, LIV, VEP (speed, decays, (oscillations) HE γ , e, gravity wave, (ν))

A TeV-Scale Z'

- Strings, GUTs, DSB, little Higgs, LED often involve extra Z'
- Typically $M_{Z'} > 600 900$ GeV (Tevatron, LEP 2, WNC); $|\theta_{Z-Z'}| < \text{few} \times 10^{-3}$ (Z-pole) (CDF di-electron: 850 (Z_{seq}), 740 (Z_{χ}), 725 (Z_{ψ}), 745 (Z_{η}))
- Discovery to $M_{Z'}\sim 5-8$ TeV at LHC, ILC, $(pp \rightarrow \mu^+ \mu^-, e^+ e^-, q \bar{q})$ (depends on couplings, exotics, sparticles)
- Diagnostics to 1-2 TeV (asymmetries, y distributions, associated production, rare decays)

Implications of a TeV-scale U(1)'

- Natural Solution to μ problem $W \sim hSH_uH_d \rightarrow \mu_{eff} = h\langle S \rangle$ ("stringy version" of NMSSM)
- Extended Higgs sector
 - Relaxed upper limits, couplings, parameter ranges (e.g., $\tan\beta$ can be close to 1)
 - Higgs singlets needed to break U(1)'
 - Doublet-singlet mixing \rightarrow highly non-standard collider signatures
- Large A term and possible tree-level CP violation (no new EDM constraints) \rightarrow electroweak baryogenesis

- Extended neutralino sector
 - Additional neutralinos, non-standard couplings, e.g., light singlino-dominated, extended cascades
 - Enhanced possibilities for cold dark matter, $g_{\mu}-2$ (small aneta)
- Exotics (anomaly-cancellation)
 - Decay by mixing; diquark or leptoquark coupling; or quasi-stable
- Constraints on neutrino mass generation
- Z' decays into sparticles/exotics
- Flavor changing neutral currents (for non-universal U(1)' charges)
 - Tree-level effects in B decay competing with SM/MSSM loops
- Z' mediation of supersymmetry breaking (PL, G. Paz, L. T. Wang, I. Yavin, 0710.1632.)

- Experimental LEP SM and MSSM bounds may be relaxed by singlet-doublet mixing (also by nonstandard decays)
- Theoretical upper bound $\sim 135~{\rm GeV}$ relaxed by F and D terms

SUSY-breaking scale models (Demir et al)

- $M_{Z'} \sim M_Z$, leptophobic
- $M_{Z'} \gtrsim 10 M_Z$ by modest tuning

Superpotential : $W = hSH_uH_d$ Potential : $V = V_F + V_D + V_{soft}$

$$\begin{split} V_F &= h^2 \left(|H_d|^2 |H_u|^2 + |S|^2 |H_d|^2 + |S|^2 |H_u|^2 \right) \\ V_D &= \frac{G^2}{8} \left(|H_u|^2 - |H_d|^2 \right)^2 \\ &+ \frac{g_{Z'}^2}{2} \left(Q_S |S|^2 + Q_{H_d} |H_d|^2 + Q_{H_u} |H_u|^2 \right)^2 \\ V_{soft} &= m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_S^2 |S|^2 - (A_h h S H_u H_d + \text{H.C.}) \\ \end{split}$$
where $G^2 = g_1^2 + g_2^2$, $M_{Z'} \sim \sqrt{2} g_{Z'} Q_s \langle S \rangle$

• A_h term can give strong first order EWPT, but no tree-level CP violation in Higgs sector

KICP, November 2007

Flat directions

• Two SM singlets charged under U(1)'. If no F terms,

$$V(S_1,S_2)=m_1^2|S_1^2|+m_2^2|S_2^2|+rac{g'^2Q'^2}{2}(|S_1^2|-|S_2^2|)^2$$

Break at EW scale for $m_1^2 + m_2^2 > 0$, at intermediate scale for $m_1^2 + m_2^2 < 0$ (stabilized by loops or HDO)

• Small Dirac neutrino (or other fermion) masses from

$$W \sim \hat{H}_u \hat{L}_L \hat{
u}_L^c \left(rac{\hat{S}}{\mathcal{M}}
ight)^{P_D}$$

• Secluded sector: lift F-flatness by small (~ 0.05) singlet Yukawa

KICP, November 2007

Secluded sector models (Erler, PL, Li)

- Approximately flat direction, broken by small (~ 0.05) Yukawa
- Z' breaking decoupled from effective μ term
- Four SM singlets: $S, S_{1,2,3}$, doublets $H_{1,2}$
- Off-diagonal Yukawas
- Can be consistent with minimal gauge unification

$$egin{aligned} ext{Superpotential}: & W &= hSH_uH_d + \lambda S_1S_2S_3 \ & ext{Potential}: & V &= V_F + V_D + V_{soft} \end{aligned}$$

$$egin{array}{rcl} V_F &=& h^2 \left(|H_d|^2 |H_u|^2 + |S|^2 |H_d|^2 + |S|^2 |H_u|^2
ight) \ &+& \lambda^2 \left(|S_1|^2 |S_2|^2 + |S_2|^2 |S_3|^2 + |S_3|^2 |S_1|^2
ight) \end{array}$$

$$egin{aligned} V_D &= & rac{G^2}{8} \left(|H_u|^2 - |H_d|^2
ight)^2 \ &+ & rac{1}{2} g_{Z'}^2 \left(Q_S |S|^2 + Q_{H_d} |H_d|^2 + Q_{H_u} |H_u|^2 + \sum_{i=1}^3 Q_{S_i} |S_i|^2
ight)^2 \end{aligned}$$

where $G^2=g_1^2+g_2^2$,

KICP, November 2007

$$\begin{split} V_{soft} &= m_{H_d}^2 |H_d|^2 + m_{H_u}^2 |H_u|^2 + m_S^2 |S|^2 + \sum_{i=1}^3 m_{S_i}^2 |S_i|^2 \\ &- (A_h h S H_u H_d + A_\lambda \lambda S_1 S_2 S_3 + \text{H.C.}) \\ &- (m_{SS_1}^2 S S_1 + m_{SS_2}^2 S S_2 + m_{S_1S_2}^2 S_1^\dagger S_2 + \text{H.C.}) \end{split}$$

- $\langle S_i
 angle \sim m_{S_i}/\lambda$ large for small λ , along $D(U(1)') \sim 0$
- Smaller $\langle S
 angle, \; \langle H_i
 angle$, dominated by hA_h : $aneta \sim 1, \langle S
 angle \sim \langle H_i
 angle$
- Large doublet-singlet mixing
- Two sectors nearly decoupled
- Mixed soft terms break two global symmetries (constrains charges)
- Tree-level CP breaking in S, S_i sector in general (Important for baryogenesis; little effect on EDMs)

KICP, November 2007

Electroweak Baryogenesis

(J. Kang, PL, T. Li, T. Liu)

• Secluded model implemented in anomaly-free E_6 -type U(1)' model, consistent with gauge unification

$$E_{6} \rightarrow SO(10) \times U(1)_{\psi} \rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi} \quad (1)$$
$$Q' = \cos \theta \ Q_{\chi} + \sin \theta \ Q_{\psi}, \qquad \tan \theta = \frac{\sqrt{15}}{9} \quad (2)$$
$$(S_{1,2} \rightarrow S^{*}, S_{3} \rightarrow \bar{N}^{*})$$

• U(1)' charges of all quarks, leptons, Higgs, exotics specified

SO(10)	SU(5)	$2\sqrt{10}Q_\chi$	$2\sqrt{6}Q_\psi$	$2\sqrt{15}Q'$
16	$10~(u,d,ar{u},ar{e})$	-1	1	-1/2
	$ar{5}~(ar{d}, u,e)$	3	1	4
	$1ar{N}$	-5	1	-5
10	$5 (D, H'_u)$	2	-2	1
	$ar{5}~(ar{D},H_d^{ec{\prime}})$	-2	-2	-7/2
1	$1 \; S_L$	0	4	5/2

Decomposition of the E_6 fundamental 27 representation under SO(10), SU(5), and the $U(1)_{\chi}$, $U(1)_{\psi}$ and U(1)' charges.

h	A_h	λ	A_{λ}	$m^2_{SS_1}$	$m^2_{SS_2}$	$m^2_{S_1S_2}$	$m_{H^0_u}^2$
0.8	4	0.06	3.1	0.02	0.1	5.6D-4	2 / 4 / 6
$\mid m^2_{H^0_d} \mid$	m_S^2	$m_{S_1}^2$	$m_{S_2}^2$	$m_{S_3}^2$	M_1'	M_1	M_2
-0.5	0.5	0.03	0.03	-0.01	6.4	6.4	6.4

Three sets of typical parameter values (a,b,c). The energy units are 65 GeV, 80 GeV and 93 GeV, corresponding to $m_{H_u^0}^2 = 2$, 4 and 6, respectively.

The Electroweak Phase Transition

 \bullet Effective potential at finite T

$$V_{ ext{eff}}(\phi,T) = V_0(\phi) + V_1(\phi,0) + \Delta V_1(\phi,T) + \Delta V_{ ext{daisy}}(\phi,T)$$

- Assume no charge/color breaking \rightarrow 10 physical variables (complex VEVs of $H_{1,2}^0, S, S_{1,2,3}$ minus 2 gauge dof)
- $M_{Z'} \sim 1 \,\, {\rm TeV} \gg M_Z \Rightarrow$
 - $S_{1,2,3}$ VEVs \gg those of $H_{1,2},S$
 - First phase transition breaks U(1)', second breaks SU(2) imes U(1)
 - Magnitude of S VEV changes during $SU(2) \times U(1)$ transition, inducing phase changes

The Higgs VEVs versus temperature. The VEVs of $H_{u,d}^0$ and S are multiplied by 5.

• Can obtain strong first order transition, even with large \tilde{t} masses, e.g., $v(T_c)/T_c = 1.3$ with $T_c = 120$ GeV

KICP, November 2007

Tree-Level CP Violation in Higgs Sector

• 6 neutral Higgs, 4 gauge invariant phases \rightarrow can choose $A_hh, A_\lambda\lambda, m^2_{SS_1}, m^2_{SS_2}$ real and positive, and $m^2_{S_1S_2} = |m^2_{S_1S_2}|e^{i\gamma}$

$$egin{aligned} V^{H}_{soft} &= m^2_{H^0_d} |H^0_d|^2 + m^2_{H^0_u} |H^0_u|^2 + m^2_S |S|^2 + \sum_{i=1}^3 m^2_{S_i} |S_i|^2 \ &- 2A_h h |S| |H^0_d| |H^0_u| \coseta_3 - 2A_\lambda\lambda |S_1| |S_2| |S_3| \coseta_4 \ &- 2m^2_{SS_1} |S| |S_1| \coseta_1 - 2m^2_{SS_2} |S| |S_2| \coseta_2 \ &- 2|m^2_{S_1S_2}| |S_1| |S_2| \cos(-eta_1 + eta_2 + \gamma) \end{aligned}$$

- Tree-level: minimum for $\beta_{3,4} = 0$, $\beta_{1,2} \neq 0$
- EWPT: $S_i \sim \text{constant}, H^0_{u,d}$ change $\rightarrow S$ changes $\rightarrow eta_{1,2}$ change

KICP, November 2007

Change in phases of $H_{u,d}^0$

• New contributions to quark, electron, atomic EDMs negligible (need 3 Yukawas and 3 soft mass-squares)

KICP, November 2007

Electroweak baryogenesis

Utilize the electroweak (*B*-violating) tunneling to generate the asymmetry at time of electroweak phase transition (Kuzmin, Rubakov, Shaposhnikov)

Off the wall scenario (Cohen, Kaplan, Nelson)

• Strong first order phase transition from electroweak symmetry unbroken (massless W, Z, fermions) to broken phase (massive W, Z, fermions) proceeds by nucleation and expansion of bubbles

(Figures: W. Bernreuther, hep-ph/0205279)

- CP violation by asymmetric reflection of quarks and leptons (or squarks/charginos/neutralinos) from the wall
- Electroweak *B* violation in unbroken phase outside wall
- Scenario requires strong first order transition, $v(T_c)/T_c \gtrsim 1-1.3$ and adequate CP violation in expanding bubble wall

- For τ lepton use thin wall approximation (justified)
- For reasonable parameters, can obtain adequate asymmetry, even for large \tilde{t} mass, from τ alone

$$rac{n_B}{s}=540\gamma^3(\langle v_{ au_L}
angle+v_w)rac{D_{ au_L}m_ au(\infty)^2\delta\Delta heta_1h(\delta,T_c)\Gamma_{ws}}{(2\pi)^4v_wg_*T_c^3}$$

 $\gamma=$ explicit CP phase; $v_w=0.02$, $m_ au=10^{-2}T_c$. Exp: $n_B/s\sim 0.9 imes 10^{-10}$.

KICP, November 2007

- Under investigation
 - Contributions from squarks/neutralinos/charginos (may be large but very sensitive to spectrum)
 - Full spectrum with all experimental constraints
 - Cold Dark Matter (light singlino-Higgsino LSP)
 - First (U(1)') transition (gravity waves?)

Conclusions

- Important to explore alternatives to MSSM
- Top-down string constructions very often contain extra Z^\prime and SM singlets S
- Elegant solution to μ problem (string-motivated version of NMSSM)
- Many implications, including nonstandard Higgs spectrum/couplings, CDM, $g_{\mu} 2$, efficient EW baryogenesis, $B_s \bar{B}_s$ mixing, rare B decays, neutrino masses
- But, must observe Z'

$$\chi^0_L =$$
 LSP. Exp: $n_B/s \sim 0.9 imes 10^{-10}$

Wall thickness δ

Composition of LSP

 $aneta=\langle H^0_u
angle/\langle H^0_d
angle$

Lightest chargino mass